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Control System

𝑟 – Reference Value, SP (Set-point), SV (Set Value)
𝑦 – Measurement Value (MV), Process Value (PV)
𝑒 – Error between the reference value and the measurement value (𝑒 = 𝑟 – 𝑦)
𝑣 – Disturbance, makes it more complicated to control the process
𝑢 - Control Signal from the Controller

Controller Process

Sensors

Actuators

Filtering

𝑟 𝑢𝑒

− 𝑦

𝑣



The PID Algorithm

Tuning Parameters:

𝐾𝑝
𝑇𝑖
𝑇𝑑

Where 𝑢 is the controller output and 𝑒 is the 
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point

𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏 + 𝐾𝑝𝑇𝑑 ሶ𝑒

Proportional Gain

Integral Time [sec. ]

Derivative Time [sec. ]



The PI Algorithm

Tuning Parameters:

𝐾𝑝
𝑇𝑖

Where 𝑢 is the controller output and 𝑒 is the 
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point

𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏

Proportional Gain

Integral Time [sec. ]



PI(D) Algorithm in MATLAB

• We can use the pid() function in MATLAB

• We can define the PI(D) transfer function 
using the tf() function in MATLAB

• We can also define and implement a discrete 
PI(D) algorithm



Discrete PI Controller Algorithm
We start with:

𝑢 𝑡 = 𝑢0 + 𝐾𝑝𝑒 𝑡 +
𝐾𝑝
𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏

In order to make a discrete version using, e.g., Euler, we can derive both sides of the equation:

ሶ𝑢 = ሶ𝑢0 + 𝐾𝑝 ሶ𝑒 +
𝐾𝑝
𝑇𝑖
𝑒

If we use Euler Forward we get:
𝑢𝑘 − 𝑢𝑘−1

𝑇𝑠
=
𝑢0,𝑘 − 𝑢0,𝑘−1

𝑇𝑠
+ 𝐾𝑝

𝑒𝑘 − 𝑒𝑘−1
𝑇𝑠

+
𝐾𝑝

𝑇𝑖
𝑒𝑘

Then we get:

𝑢𝑘 = 𝑢𝑘−1 + 𝑢0,𝑘 − 𝑢0,𝑘−1 + 𝐾𝑝 𝑒𝑘 − 𝑒𝑘−1 +
𝐾𝑝

𝑇𝑖
𝑇𝑠𝑒𝑘

Where
𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

We can also split the equation above in 2 different parts by setting:
∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1

This gives the following PI control algorithm:
𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

∆𝑢𝑘 = 𝑢0,𝑘 − 𝑢0,𝑘−1 + 𝐾𝑝 𝑒𝑘 − 𝑒𝑘−1 +
𝐾𝑝
𝑇𝑖
𝑇𝑠𝑒𝑘

𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘
This algorithm can easily be implemented in MATLAB



Discrete PI Controller Algorithm

𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

∆𝑢𝑘 = 𝑢0,𝑘 − 𝑢0,𝑘−1 + 𝐾𝑝 𝑒𝑘 − 𝑒𝑘−1 +
𝐾𝑝

𝑇𝑖
𝑇𝑠𝑒𝑘

𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘

Discrete PI control algorithm:



PID Controller –Transfer Function

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏 + 𝐾𝑝𝑇𝑑 ሶ𝑒

Laplace gives:

We have: 

𝐻𝑃𝐼𝐷 𝑠 =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 +

𝐾𝑝

𝑇𝑖𝑠
+ 𝐾𝑝𝑇𝑑𝑠

or:

𝐻𝑃𝐼𝐷 𝑠 =
𝑢(𝑠)

𝑒(𝑠)
=
𝐾𝑝(𝑇𝑑𝑇𝑖𝑠

2 + 𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠



PI Controller –Transfer Function

𝐻𝑃𝐼 𝑠 =
𝑢(𝑠)

𝑒(𝑠)
=
𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏

Laplace gives:

We have: 

𝐻𝑃𝐼 𝑠 =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 +

𝐾𝑝

𝑇𝑖𝑠
=
𝐾𝑝𝑇𝑖𝑠 + 𝐾𝑝

𝑇𝑖𝑠
=
𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠

Finally:



Define PI Transfer function in MATLAB

clear, clc

% PI Controller Transfer function

Kp = 0.52;

Ti = 18;

num = Kp*[Ti, 1];

den = [Ti, 0];

Hpi = tf(num,den)

...

𝐻𝑃𝐼 𝑠 =
𝑢(𝑠)

𝑒(𝑠)
=
𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠



PI Controller – State space model
Given:

𝑢 𝑠 = 𝐾𝑝𝑒 𝑠 +
𝐾𝑝

𝑇𝑖𝑠
𝑒 𝑠

We set 𝑧 =
1

𝑠
𝑒 ⇒ 𝑠𝑧 = 𝑒 ⇒ ሶ𝑧 = 𝑒

This gives:
ሶ𝑧 = 𝑒

𝑢 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
𝑧

Where
𝑒 = 𝑟 − 𝑦



PI Controller – Discrete State space model
Using Euler:

ሶ𝑧 ≈
𝑧𝑘+1 − 𝑧𝑘

𝑇𝑠
Where 𝑇𝑠 is the Sampling Time.

This gives:
𝑧𝑘+1 − 𝑧𝑘

𝑇𝑠
= 𝑒𝑘

𝑢𝑘 = 𝐾𝑝𝑒𝑘 +
𝐾𝑝

𝑇𝑖
𝑧𝑘

Finally:
𝑒𝑘 = 𝑟𝑘 − 𝑦𝑘

𝑢𝑘 = 𝐾𝑝𝑒𝑘 +
𝐾𝑝

𝑇𝑖
𝑧𝑘

𝑧𝑘+1 = 𝑧𝑘 + 𝑇𝑠𝑒𝑘



PI Controller – Discrete State space model
implemented in MATLAB clear, clc

...

for i=1:N

...

e = r - y; 

u = Kp*e + z; 

z = z + dt*Kp*e/Ti;

...

end

plot(...) 
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Frequency Response
• The frequency response of a system is a frequency dependent 

function which expresses how a sinusoidal signal of a given frequency 
on the system input is transferred through the system. Each 
frequency component is a sinusoidal signal having certain amplitude 
and a certain frequency.

• The frequency response is an important tool for analysis and design 
of signal filters and for analysis and design of control systems. 

• The frequency response can be found experimentally or from a 
transfer function model.

• The frequency response of a system is defined as the steady-state 
response of the system to a sinusoidal input signal. When the system 
is in steady-state, it differs from the input signal only in 
amplitude/gain (A) and phase lag (𝜙).

Theory



Frequency 
Response

Dynamic 
System

Input Signal
Output Signal

Gain Phase Lag

FrequencyAmplitude

The frequency response of a system expresses how a sinusoidal signal of a given frequency on the system 
input is transferred through the system. The only difference is the gain and the phase lag.

Theory

𝑢 𝑡 = 𝑈 ∙ 𝑠𝑖𝑛𝜔𝑡
𝑦 𝑡 = ด𝑈𝐴

𝑌

𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

Input Signal

Output Signal



Frequency Response - Definition

• The frequency response of a system is defined as the steady-state response of the system to a sinusoidal
input signal. 

• When the system is in steady-state, it differs from the input signal only in amplitude/gain (A) (Norwegian: 
“forsterkning”) and phase lag (ϕ) (Norwegian: “faseforskyvning”). 

and the same for Frequency 2, 3, 4, 5, 6, etc.

Theory

𝑢 𝑡 = 𝑈 ∙ 𝑠𝑖𝑛𝜔𝑡 𝑦 𝑡 = ด𝑈𝐴
𝑌

𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

Dynamic 
System

𝜔 = 1 𝑟𝑎𝑑/𝑠
𝜔 = 1 𝑟𝑎𝑑/𝑠

Input Output



Frequency Response - Simple Example

Inside Temperature

Assume the outdoor temperature is varying like a sine function during a year (frequency 1) or during 24 hours (frequency 2).
Then the indoor temperature will be a sine as well, but with different gain. In addition it will have a phase lag.

Note! Only the 
gain and phase 
are different

Theory

Outside Temperature

Dynamic System
frequency 1 (year)

T = 1 year

frequency 1 (year)



Frequency Response - Simple Example

Inside Temperature

Assume the outdoor temperature is varying like a sine function during a year (frequency 1) or during 24 hours (frequency 2).
Then the indoor temperature will be a sine as well, but with different gain. In addition it will have a phase lag.

Note! Only the gain and phase are different

Theory

Outside Temperature

Dynamic System
frequency 2 (24 hours)

frequency 2 (24 hours)

T = 24 hours



Frequency Response using 
Bode Diagram
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Bode Diagram

𝐿𝑜𝑔 𝜔

𝐿𝑜𝑔 𝜔
𝜑

∆𝐾

𝜔𝑐

𝜔180

You can find the Bode diagram from experiments on the physical process or from the transfer function (the model of the 
system). A simple sketch of the Bode diagram for a given system: 

The Bode diagram gives a simple Graphical 
overview of the Frequency Response for a 
given system. A Tool for Analyzing the 
Stability properties of the Control System.

With MATLAB you can easily create Bode 
diagram from the Transfer function model 
using the bode() function

ω [rad/s]

ω [rad/s]

0𝑑𝐵



Bode Diagram from experiments
We find 𝐴 and 𝜙 for each of the frequencies, 
e.g.: 

Based on that we can plot the 
Frequency Response in a so-called Bode 
Diagram:

Find Data for different frequencies

...



Bode Diagram The x-scale is logarithmic 

Gain (“Forsterkningen”)

Phase lag (“Faseforkyvningen”)

Note! The y-scale is in [𝑑𝐵]

Normally, the unit for frequency is Hertz [Hz], but in frequency response and Bode 
diagrams we use radians ω [rad/s]. The relationship between these are as follows:

The y-scale is in [𝑑𝑒𝑔𝑟𝑒𝑒𝑠]

𝑥 𝑑𝐵 = 20𝑙𝑜𝑔10𝑥

2𝜋 𝑟𝑎𝑑 = 360°

𝜔 = 2𝜋𝑓



Frequency Response – MATLAB

clear

clc

close all

% Define Transfer function

num=[1];

den=[1, 1];

H = tf(num, den)

% Frequency Response

bode(H);

grid on

The frequency response is an important tool for analysis and design 
of signal filters and for analysis and design of control systems. 

Transfer Function:

MATLAB Code:



Frequency Response – MATLAB
clear

clc

close all

% Define Transfer function

num = [1];

den = [1, 1];

H = tf(num, den)

% Frequency Response

bode(H);

grid on

% Get Freqquency Response Data

wlist = [0.01, 0.1, 1, 2 ,3 ,5 ,10, 100];

[mag, phase, w] = bode(H, wlist);

for i=1:length(w)

magw(i) = mag(1,1,i);

phasew(i) = phase(1,1,i);

end

magdB = 20*log10(magw); % Convert to dB

freq_data = [wlist; magdB; phasew]'

Transfer Function:

Instead of Plotting the Bode Diagram we 
can also use the bode function for 
calculation and showing the data as well:

freq_data =  

0.0100   -0.0004   -0.5729    

0.1000   -0.0432   -5.7106    

1.0000   -3.0103   -45.0000    

2.0000   -6.9897   -63.4349    

3.0000   -10.0000  -71.5651    

5.0000   -14.1497  -78.6901   

10.0000  -20.0432  -84.2894  

100.0000 -40.0004  -89.4271



Bode Diagram – MATLAB Example

clear, clc

% Transfer function

num=[1];

den1=[1,0];

den2=[1,1]

den3=[1,1]

den = conv(den1,conv(den2,den3));

H = tf(num, den)

% Bode Diagram

bode(H)

subplot(2,1,1)

grid on

subplot(2,1,2)

grid on

clear, clc

% Transfer function

num=[1];

den=[1,2,1,0];

H = tf(num, den)

% Bode Diagram

bode(H)

subplot(2,1,1)

grid on

subplot(2,1,2)

grid on

or:

MATLAB Code:



Example
We will use the following system as an example:

𝐻𝑐 = 𝐾𝑝 𝐻𝑝 =
1

𝑠(𝑠 + 1)

𝐻𝑚 =
1

3𝑠 + 1

Controller Process

Sensors

𝑟 𝑢𝑒

− 𝑦



Bode Diagram – MATLAB Example

clear

clc

num = 1;

den = [1,1,0];

Hp = tf(num,den)

bode(Hp)

grid on

MATLAB Code:
𝐻𝑝 =

1

𝑠(𝑠 + 1)
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A Complex Number is given by:

𝑧 = 𝑎 + 𝑗𝑏

Where

𝑗 = −1

We have that:
𝑎 = 𝑅𝑒 𝑧

𝑏 = 𝐼𝑚(𝑧)

Complex Numbers

𝑧 = 𝑎 + 𝑗𝑏

0 𝑎

𝑏

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦
𝐴𝑥𝑖𝑠 (𝐼𝑚)

𝑅𝑒𝑎𝑙
𝐴𝑥𝑖𝑠(𝑅𝑒)



Complex Numbers
Polar form:

𝑧 = 𝑟𝑒𝑗𝜃

Where:

𝑟 = 𝑧 = 𝑎2+𝑏2

𝜃 = 𝑎𝑡𝑎𝑛
𝑏

𝑎

Note! 

𝑎 = 𝑟 cos 𝜃

𝑏 = 𝑟 sin 𝜃

𝑧 = 𝑟𝑒𝑗𝜃

0 𝑎

𝑏

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦
𝐴𝑥𝑖𝑠 (𝐼𝑚)

𝑅𝑒𝑎𝑙
𝐴𝑥𝑖𝑠(𝑅𝑒)

𝜃
𝑟

𝑗 = −1



Complex Numbers
Rectangular form of a complex number Exponential/polar form of a complex number

Length (“Gain”): Angle (“Phase”):

1 2

𝑧 = 𝑎 + 𝑗𝑏

0 𝑎

𝑏

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦
𝐴𝑥𝑖𝑠 (𝐼𝑚)

𝑅𝑒𝑎𝑙
𝐴𝑥𝑖𝑠(𝑅𝑒)

𝑧 = 𝑟𝑒𝑗𝜃

0 𝑎

𝑏

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦
𝐴𝑥𝑖𝑠 (𝐼𝑚)

𝑅𝑒𝑎𝑙
𝐴𝑥𝑖𝑠(𝑅𝑒)

𝜃
𝑟

𝑟 = 𝑧 = 𝑎2 + 𝑏2 𝜃 = 𝑎𝑡𝑎𝑛
𝑏

𝑎

𝑗 = −1



Frequency response from 
Transfer function
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Manually find the Frequency Response 
from the Transfer Function

For a transfer function:

𝐻 𝑆 =
𝑦(𝑠)

𝑢(𝑠)

We have that: 

𝐻 𝑗𝜔 = 𝐻(𝑗𝜔) 𝑒𝑗∠𝐻(𝑗𝜔)

Where 𝐻(𝑗𝜔) is the frequency response of the system, i.e., we may find the frequency response by setting 𝑠 = 𝑗𝜔
in the transfer function. Bode diagrams are useful in frequency response analysis. 

The Bode diagram consists of 2 diagrams, the Bode magnitude diagram, 𝐴(𝜔) and the Bode phase diagram, 
𝜙(𝜔).

The Gain function:

𝐴 𝜔 = 𝐻(𝑗𝜔)

The Phase function:

𝜙 𝜔 = ∠𝐻(𝑗𝜔)

The 𝐴(𝜔)-axis is in decibel (dB), where the decibel value of x is calculated as: 𝑥 𝑑𝐵 = 20𝑙𝑜𝑔10𝑥

The 𝜙(𝜔)-axis is in degrees (not radians!)

Theory

𝑠 = 𝑗𝜔



Mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔)

cont. next page

We find the Mathematical expressions  for 𝐴(𝜔) and 𝜙(𝜔) by setting 𝑠 = 𝑗𝜔 in the transfer function 
given by: 

𝐻 𝑠 =
𝑦(𝑠)

𝑢(𝑠)
=

𝐾

𝑇𝑠 + 1

The Frequency Response (we replace 𝑠 with 𝑗𝜔) then becomes:

𝐻 𝑗𝜔 =
𝐾

𝑇𝑗𝜔 + 1
=

𝐾

ณ1
𝑅𝑒

+ 𝑗 ด𝑇𝜔
𝐼𝑚

Polar form:

𝐻 𝑗𝜔 =
𝐾

12 + 𝑇𝜔 2𝑒
𝑗 𝑎𝑟𝑐𝑡𝑎𝑛

𝑇𝜔
1

=
𝐾

1 + 𝑇𝜔 2
𝑒𝑗 −𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝜔)

Finally:

𝐻 𝑗𝜔 =
𝐾

1 + 𝑇𝜔 2
𝑒𝑗 −𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝜔)



cont. from previous page

The Gain function becomes:

𝐴 𝜔 = 𝐻(𝑗𝜔) =
𝐾

1 + 𝑇𝜔 2

Or in  𝑑𝐵 (used in the Bode Plot):

𝐴 𝜔 𝑑𝐵 = 𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔𝐾 − 20𝑙𝑜𝑔 1 + 𝑇𝜔 2

The Phase function becomes ( 𝑟𝑎𝑑 ):

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = 𝑎𝑟𝑔 𝐻 𝑗𝜔 = −𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝜔)

Or in degrees ° (used in the Bode plot):

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = −𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝜔) ∙
180

𝜋
Note: 2𝜋 𝑟𝑎𝑑 = 360°



Transfer function: 𝑨(𝝎) og 𝝓(𝝎):

𝐻 𝑠 =
1

𝑠 + 1

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔1 − 20𝑙𝑜𝑔 (𝜔)2+1

∠𝐻(𝑗𝜔) = −arctan(𝜔)

𝐻 𝑠 =
4

2𝑠 + 1

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔4 − 20𝑙𝑜𝑔 (2𝜔)2+1

∠𝐻(𝑗𝜔) = −arctan(2𝜔)

𝐻 𝑆 =
5

𝑠 + 1 (10𝑠 + 1)

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔5 − 20𝑙𝑜𝑔 (𝜔)2+1 − 20𝑙𝑜𝑔 (10𝜔)2+1

∠𝐻(𝑗𝜔) = −arctan(𝜔) − arctan(10𝜔)

𝐻 𝑆 =
1

𝑠 𝑠 + 1 2

𝐻(𝑗𝜔) 𝑑𝐵 = −20𝑙𝑜𝑔 (𝜔)2− 2𝑥20𝑙𝑜𝑔 (𝜔)2+1

= 20𝑙𝑜𝑔𝜔 − 40𝑙𝑜𝑔 (𝜔)2+1

∠𝐻(𝑗𝜔) = −90 − 2 arctan(𝜔)

𝐻 𝑠 =
3.2𝑒−2𝑠

3𝑠 + 1

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔3.2 − 20𝑙𝑜𝑔 (3𝜔)2+1

∠𝐻(𝑗𝜔) = −2𝜔 − arctan(3𝜔)

𝐻 𝑆 =
5𝑠 + 1

2𝑠 + 1 (10𝑠 + 1)

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔 (5𝜔)2+1 − 20𝑙𝑜𝑔 (2𝜔)2+1 − 20𝑙𝑜𝑔 (10𝜔)2+1

∠𝐻(𝑗𝜔) = arctan(5𝜔) − arctan(2𝜔) − arctan(10𝜔)
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Manually find the Frequency Response 
from the Transfer Function

Given the following transfer function:

𝐻 𝑆 =
4

2𝑠 + 1

The mathematical expressions for 𝐴(𝜔) and 
𝜙(𝜔) become:

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔4 − 20𝑙𝑜𝑔 (2𝜔)2+1

∠𝐻(𝑗𝜔) = −arctan(2𝜔)

Bode Plot:

These equations can easily be implemented in MATLAB (See next slide)



clear

clc

% Transfer function

num=[4];

den=[2, 1];

H = tf(num, den)

% Bode Plot

figure(1)

bode(H)

grid on

% Margins and Phases for given Frequencies

% Alt 1: Use bode function directly

disp('----- Alternative 1 -----')

w = [0.1, 0.16, 0.25, 0.4, 0.625, 2.5, 10];

[magw, phasew] = bode(H, w);

for i=1:length(w)

mag(i) = magw(1,1,i);

phase(i) = phasew(1,1,i);

end

magdB = 20*log10(mag); %convert to dB

mag_data = [w; magdB]

phase_data = [w; phase]

clear

clc

w = [0.1, 0.16, 0.25, 0.4, 0.625, 2.5, 10];

% Alt 2: Use Mathematical expressions for H and <H

disp('----- Alternative 2 -----')

gain = 20*log10(4) - 20*log10(sqrt((2*w).^2+1)); 

phase = -atan(2*w);

phasedeg = phase * 180/pi; %convert to degrees

mag_data2 = [w; gain]

phase_data2 = [w; phasedeg]

figure(2)

subplot(2,1,1)

semilogx(w,gain)

grid on

subplot(2,1,2)

semilogx(w,phasedeg)

grid on

MATLAB Code



Transfer functions
with Time delay



Transfer functions with Time delay

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
𝑒−𝑇𝑠

A general transfer function for a 1.order system with time delay is:

Frequency Response functions for gain and phase margin becomes:

𝐴 𝜔 𝑑𝐵 = 20𝑙𝑜𝑔(𝐾) − 20𝑙𝑜𝑔 (𝑇𝜔)2+1
𝜙 𝜔 = −𝑎𝑟𝑐𝑡𝑎𝑛 𝑇𝜔 − 𝜔 ∙ 𝜏

Or 𝜙 𝜔 in degrees:

𝜙 𝜔 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] = −arctan 𝑇𝜔 − 𝜔 ∙ 𝜏
180

𝜋



Transfer functions with Time delay in MATLAB

K = 3.5;

T = 22;

Tau = 2;

num = [K];

den = [T, 1];

H1 = tf(num, den);

s = tf('s')

H2 = exp(-Tau*s);

H = H1 * H2

bode(H)

K = 3.5;

T = 22;

Tau = 2;

num = [K];

den = [T, 1];

H1 = tf(num, den);

H = set(H1,'inputdelay',Tau)

bode(H);

K = 3.5;

T = 22;

Tau = 2;

s = tf('s');

H = K*exp(-Tau*s)/(T*s+1)

bode(H);

Different ways to implement a time delay in MATLAB:

Alt 1
Alt 2

Alt 3

Alt 4: Use Pade approximation
K = 3.5;

T = 22;

Tau = 2;

num = [K];

den = [T, 1];

H1 = tf(num, den);

N=5;

H2 = pade(Tau, N)

[num_pade,den_pade] = pade(T,N)

Hpade = tf(num_pade,den_pade);

H = series(H1, Hpade);

bode(H);



1. order system with Time delay
Given the following transfer function:

𝐻 𝑠 =
3.2𝑒−2𝑠

3𝑠 + 1

The mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔):

𝐻(𝑗𝜔) 𝑑𝐵 = 20𝑙𝑜𝑔3.2 − 20𝑙𝑜𝑔 (3𝜔)2+1

∠𝐻(𝑗𝜔) = −2𝜔 − arctan(3𝜔)

Or in degrees:∠𝐻 𝑗𝜔 = −2𝜔 − arctan(3𝜔) ∙
180

𝜋

Break frequency:

𝜔 =
1

𝑇
=
1

3
= 0.33 𝑟𝑎𝑑/𝑠

Poles:

𝑝1 = −
1

3
= −0.33

Zeros: 
None



clear, clc

s = tf('s');

K=3.2; 

T=3;

H1=tf(K/(T*s+1));

delay = 2;

H = set(H1,'inputdelay',delay)

bode(H);

p = pole(H)

z = zero (H)

H =

3.2

exp(-2*s) * -------

3 s + 1 

Continuous-time transfer function.

p =   -0.3333

z =   Empty matrix: 0-by-1

clear, clc

s=tf('s');

K=3.2; 

T=3;

Tau = 2;

num = K;

den = [T, 1];

H1 = tf(num, den);

s = tf('s')

H2 = exp(-Tau*s);

H = H1 * H2

bode(H);

p = pole(H)

z = zero (H)

or:
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Frequency Response from sinusoidal 
input and output signals

We can find the frequency response of a system 
by exciting the system (either the real system or a 
model of the system) with a sinusoidal signal of 
amplitude 𝐴 and frequency 𝜔 [𝑟𝑎𝑑/𝑠] (Note: 
𝜔 = 2𝜋𝑓) and observing the response in the 
output variable of the system. 

Theory



Frequency Response - Definition

• The frequency response of a system is defined as the steady-state response of the system to a sinusoidal
input signal. 

• When the system is in steady-state, it differs from the input signal only in amplitude/gain (A) (Norwegian: 
“forsterkning”) and phase lag (ϕ) (Norwegian: “faseforskyvning”). 

and the same for Frequency 2, 3, 4, 5, 6, etc.

Theory

𝑢 𝑡 = 𝑈 ∙ 𝑠𝑖𝑛𝜔𝑡 𝑦 𝑡 = ด𝑈𝐴
𝑌

𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

Dynamic 
System

𝜔 = 1 𝑟𝑎𝑑/𝑠
𝜔 = 1 𝑟𝑎𝑑/𝑠

Input Output



Frequency Response from sinusoidal 
input and output signals

The input signal is given by:
𝑢 𝑡 = 𝑈 ∙ 𝑠𝑖𝑛𝜔𝑡

The steady-state output signal will then be:

𝑦 𝑡 = ด𝑈𝐴
𝑌

𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

The gain is given by:

𝐴 =
𝑌

𝑈
The phase lag is given by:

𝜙 = −𝜔Δ𝑡 [𝑟𝑎𝑑]

Theory



Frequency Response from sinusoidal 
input and output signals

t

Theory

The gain is given by:

𝐴 =
𝑌

𝑈

The phase lag is given by:
𝜙 = −𝜔Δ𝑡 [𝑟𝑎𝑑]

You will get plots like this for each frequency:



Find the gain (𝐴) and the phase (𝜙) for the given frequency from the plot

𝜔 = 1 rad/s



Solutions
From the Plot we get:

Cont. next page ->

t
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Conversion to dB

𝐴 𝑑𝐵 = 20𝑙𝑜𝑔(𝐴)

Example:

𝐴 = 0.68
𝐴 𝑑𝐵 = 20𝑙𝑜𝑔(𝐴)=20𝑙𝑜𝑔(0.68) ≈ −3.35𝑑𝐵

Or the other way:

𝐴 𝑑𝐵 = −3.35𝑑𝐵

𝐴 𝑑𝐵 = 10
−3.35
20 ≈ 0.68

𝐴 = 10
𝐴 𝑑𝐵
20or the other way:



𝐴 = −3.35 𝑑𝐵

𝜙 = −45.9 °

𝜔 = 1 rad/s

From the Bode diagram we can verify that our calculations are correct:



The following MATLAB Code is used to create the Plot:

clear, clc

K = 1;

T = 1;

num = [K];

den = [T, 1];

H = tf(num, den);

figure(1)

bode(H), grid on

% Define input signal

t = [1: 0.1 : 12];

w = 1;   

U = 1;

u = U*sin(w*t);

figure(2)

plot(t, u)

% Output signal

hold on

lsim(H, ':r', u, t)

grid on

hold off

legend('input signal', 'output signal')

𝐻 𝑠 =
1

𝑠 + 1

We use the following transfer function:

𝜔 = 1 rad/s

The Frequency used:
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PID Controller Design

A lot of PID Tuning methods exist, e.g., 
• Skogestad's method
• Ziegler-Nichols’ methods
• Trial and Error Methods
• PID Tuning functionality built into MATLAB
• Auto-tuning built into commercial PID controllers
• ...



Skogestad’s method
• The Skogestad’s method assumes you apply a step on the input (𝑢) 

and then observe the response and the output (𝑦), as shown below.
• If we have a model of the system (which we have in our case), we can 

use the following Skogestad’s formulas for finding the PI(D) 
parameters directly.

𝑇𝑐 is the time-constant of the control system which 
the user must specify 

Originally, Skogestad defined the factor 𝑐 = 4. This gives 
good set-point tracking. But the disturbance 
compensation may become quite sluggish. To obtain 
faster disturbance compensation, you can use  𝑐 = 1.5Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.



Ziegler–Nichols Frequency Response method

https://en.wikipedia.org/wiki/Ziegler–Nichols_method

Controller 𝐾𝑝 𝑇𝑖 𝑇𝑑

P 0.5𝐾𝑐 ∞ 0

PI 0.45𝐾𝑐
𝑇𝑐
1.2

0

PID 0.6𝐾𝑐
𝑇𝑐
2

𝑇𝑐
8

Assume you use a P controller only 𝑇𝑖 = ∞,𝑇𝑑 = 0. Then you need to find for 
which 𝐾𝑝 the closed loop system is a marginally stable system (𝜔𝑐 = 𝜔180). This  𝐾𝑝
is called 𝐾𝑐 (critical gain). The  𝑇𝑐 (critical period) can be found from the damped 
oscillations of the closed loop system. Then calculate the PI(D) parameters using 
the formulas below.

𝜔𝑐 = 𝜔180

𝐾𝑐- Critical Gain

𝑇𝑐- Critical Period

Marginally stable system: 

𝑇𝑐

Theory

𝑇𝑐 =
2𝜋

𝜔180

https://en.wikipedia.org/wiki/Ziegler–Nichols_method
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Controller Design/Tuning using MATLAB

• Frequency Design and Analysis

• pidtune() MATLAB function

• PID Tuner (Interactive Tools)

• ...

Validate with simulations!



pidtune() MATLAB function
clear, clc

%Define Process

num = 1;

den = [1,1,0];

Hp = tf(num,den)

% Find PI Controller

[Hpi,info] = pidtune(Hp,'PI')

%Bode Plots

figure(1)

bode(Hp)

grid on

figure(2)

bode(Hpi)

grid on

% Feedback System

T = feedback(Hpi*Hp, 1);

figure(3)

step(T)

𝐾𝑝 = 0.33

𝑇𝑖 =
1

𝐾𝑖
=

1

0.023
≈ 43.5𝑠



pidtune() MATLAB function
To improve the response time, you can set a higher 
target crossover frequency than the result that pidtune()
automatically selects, 0.32. Increase the crossover 
frequency to 1.0.

[Hpi,info] = pidtune(Hp,'PI', 1.0)

The new controller achieves the higher 
crossover frequency, but at the cost of a 
reduced phase margin.



MATLAB PID Tuner

Define your 
Process

Define Controller Type Tuning

Add Additional 
Plots

Step Response and other 
Plots can be shown

PID Parameters
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Stability Analysis

How do we figure out that the Feedback System 
is stable before we test it on the real System?

1. Poles

2. Frequency Response/Bode

3. Simulations (Step Response) 

We will do all these things using MATLAB



Stability Analysis
Asymptotically stable system

Marginally stable system

Unstable system

Time domain

The Complex domain

Frequency domain

Poles

Tracking 
transfer 
function

Tracking 
transfer 
function

Loop 
transfer 
function

3
2

1

Asymptotically stable system: 𝜔𝑐 < 𝜔180

Marginally stable system: 𝜔𝑐 = 𝜔180

Unstable system: 𝜔𝑐 > 𝜔180

lim
𝑡→∞

𝑦 𝑡 = 𝑘

Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.



Poles
Asymptotically stable system:

Each of the poles of the transfer function lies strictly in the 

left half plane (has strictly negative real part).

Marginally stable system:

Unstable system: 

At least one pole lies in the right half 
plane (has real part greater than zero). 

Or: There are multiple and coincident 
poles on the imaginary axis.

Example: double integrator 𝐻(𝑠) =
1

𝑠2

One or more poles lies on the imaginary axis 
(have real part equal to zero), and all these 
poles are distinct. Besides, no poles lie in the 
right half plane.

3

1

2



Stability Analysis
Asymptotically stable system: Marginally stable system: Unstable system:

Each of the poles of the transfer function lies 
strictly in the left half plane (has strictly negative 
real part).

One or more poles lies on the imaginary axis (have 
real part equal to zero), and all these poles are 
distinct. Besides, no poles lie in the right half plane.

At least one pole lies in the right half plane (has 
real part greater than zero). 

Or: There are multiple and coincident poles 
on the imaginary axis. Example: double 

integrator 𝐻(𝑠) =
1

𝑠2

Theory

lim
𝑡→∞

𝑦 𝑡 = 𝑘

0 < lim
𝑡→∞

𝑦 𝑡 < ∞

lim
𝑡→∞

𝑦 𝑡 = ∞

Figures: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.
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Stability Analysis of 
Feedback Systems 

Loop Transfer Function 
(“Sløyfetransferfunksjonen”):

The Tracking Function (“Følgeforholdet”):

L = ...

T = feedback(L, 1)

Hr = ... 

Hp = ...

Hm = ...

L = series(series(Hr, Hp), Hm)

The Sensitivity Function (“Sensitivitetsfunksjonen”):

T = ...

S = 1-T

Theory

3

1

2



Frequency Response and Stability Analysis
𝜔𝑐 and 𝜔180 are called the crossover-frequencies 
(“kryssfrekvens”)

Δ𝐾 is the gain margin (GM) of the system (“Forsterkningsmargin”). 
How much the loop gain can increase before the system becomes 
unstable

𝜙 is the phase margin (PM) of the system (“Fasemargin”). 
How much phase shift the system can tolerate before it becomes 
unstable.

Bode Diagram

Theory

Asymptotically stable system: 𝜔𝑐 < 𝜔180

Marginally stable system: 𝜔𝑐 = 𝜔180

Unstable system: 𝜔𝑐 > 𝜔180



Frequency Response and Stability Analysis Theory

Gain Crossover-frequency - 𝜔𝑐 :

𝐿 𝑗𝜔𝑐 = 1 = 0𝑑𝐵

Phase Crossover-frequency - 𝜔180 :

∠𝐿 𝑗𝜔180 = −180𝑜

Gain Margin - GM (𝛥𝐾):

𝐺𝑀 𝑑𝐵 = − 𝐿 𝑗𝜔180 𝑑𝐵

Phase margin PM (𝜑): 

𝑃𝑀 = 180𝑜 + ∠𝐿(𝑗𝜔𝑐)

We have that:
1. Asymptotically stable system: 𝜔𝑐 < 𝜔180

2. Marginally stable system: 𝜔𝑐 = 𝜔180

3. Unstable system: 𝜔𝑐 > 𝜔180

The definitions are as follows:

𝜔180 is the gain margin frequency, in 
radians/second. A gain margin frequency indicates 
where the model phase crosses -180 degrees.  

GM (Δ𝐾) is the gain margin of the system. 

𝜔𝑐 is phase margin frequency, in radians/second. A 
phase margin frequency indicates where the 
model magnitude crosses 0 decibels. 

PM (𝜑) is the phase margin of the system.
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Example
We will use the following system as an example:

𝐻𝑐 = 𝐾𝑝 𝐻𝑝 =
1

𝑠(𝑠 + 1)

𝐻𝑚 =
1

3𝑠 + 1

Controller Process

Sensors

𝑟 𝑢𝑒

−

𝑦



Analysis of the Feedback System
Loop transfer function: 𝑳(𝒔)
We need to find the Loop transfer function 𝐿(𝑠) using MATLAB.
The Loop transfer function is defined as:

𝐿 𝑠 = 𝐻𝑐𝐻𝑝𝐻𝑚 We will use the built-in function series() in MATLAB.

Tracking transfer function: 𝑻(𝒔)
We need to find the Tracking transfer function 𝑇(𝑠) using MATLAB.
The Tracking transfer function is defined as:

𝑇 𝑠 =
𝑦(𝑠)

𝑟(𝑠)
=

𝐻𝑐𝐻𝑝𝐻𝑚

1+𝐻𝑐𝐻𝑝𝐻𝑚
=

𝐿(𝑠)

1+𝐿(𝑠)
We will use the built-in function feedback() in MATLAB.

Sensitivity transfer function: 𝑺(𝒔)
We need to find the Sensitivity transfer function 𝑆(𝑠) using MATLAB.
The Sensitivity transfer function is defined as:

𝑆 𝑠 =
𝑒(𝑠)

𝑟(𝑠)
=

1

1+𝐿(𝑠)
= 1 − 𝑇(𝑠)



Stability Analysis
• Plot the Bode plot for the system using e.g., the bode() 

function in MATLAB
• Find the crossover-frequencies (𝜔180, 𝜔𝑐) and stability 

margins GM (𝐴(𝜔)), PM (𝜙(𝜔)) of the system (𝐿(𝑠)) from 
the Bode plot. 

• Plot also Bode diagram where the crossover-frequencies, 
GM and PM are illustrated. Tip! Use the margin() function 
in MATLAB.

• Use also the margin() function in order to find values for 
𝜔180, 𝜔𝑐 , 𝐴(𝜔), 𝜙(𝜔) directly.

• You should compare and discuss the results.
• How much can you increase 𝐾𝑝 before the system 

becomes unstable?



clear, clc, clf

% The Process Transfer function Hp(s)

num_p=[1];

den1=[1, 0];

den2=[1, 1];

den_p = conv(den1,den2);

Hp = tf(num_p, den_p)

% The Measurement Transfer function Hm(s)

num_m=[1];

den_m=[3, 1];

Hm = tf(num_m, den_m)

% The Controller Transfer function Hr(s)

Kp = 0.35;

Hr = tf(Kp)

% The Loop Transfer function

L = series(series(Hr, Hp), Hm)

% Bode Diagram

figure(1)

bode(L),grid on

figure(2)

margin(L)

[gm, pm, w180, wc] = margin(L);

wc

w180

gm

gmdB = 20*log10(gm)

pm

MATLAB Code:

bode(L)

margin(L)

wc =   0.2649 rad/s

w180 =   0.5774 rad/s

gm =   3.8095 

gmdB =   11.6174 dB

pm =   36.6917 degrees



𝜔𝑐 = 0.26

From the Bode plot we can get:

1
100.1

0.2

0.3
0.5

𝜔180 = 0.58

∆𝐾 = 11.6 𝑑𝐵

𝜙 = 37 °



Stable vs. Unstable System
• We will find and use different values of 𝐾𝑝 where we get a marginally 

stable system, an asymptotically stable system and an unstable system.
• We will Plot the time response for the tracking function using the step() 

function in MATLAB for all these 3 categories. How can we use the step 
response to determine the stability of the system?

• We will find 𝜔180, 𝜔𝑐, 𝐴 𝜔 and 𝜙(𝜔) in all 3 cases. We will see how 
we use 𝜔𝑐 and 𝜔180 to determine the stability of the system.

• We will find and plot the poles and zeros for the system for all the 3 
categories mentioned above. We will see how we can we use the poles 
to determine the stability of the system.

• Bandwidth: We will plot the Loop transfer function 𝐿(𝑠), the Tracking 
transfer function 𝑇(𝑠) and the Sensitivity transfer function 𝑆(𝑠) in a 
Bode diagram for the system for all the 3 categories mentioned above.



Stable System
𝐾𝑝 = 0.35

wc =   0.2649 rad/s

w180 =   0.5774 rad/s

gm =   3.8095 

gmdB =   11.6174 dB

pm =   36.6917 degrees
𝐾𝑝𝑚 = 0.35 × Δ𝐾 = 0.35 × 3.8 ≈ 1,32
For what 𝐾𝑝 becomes the system marginally stable?

𝜔𝑐 < 𝜔180 Poles in the left half plane
lim
𝑡→∞

𝑦 𝑡 = 1



Marginally Stable System
𝐾𝑝 = 1.32

𝜔𝑐 = 𝜔180 Poles at the imaginary axis0 < lim
𝑡→∞

𝑦 𝑡 < ∞

wc = 0.5744 rad/s

w180 = 0.5774 rad/s

gm = 1.0101

gmdB = 0.0873 dB

pm = 0.2500 degrees



Unstable System
𝐾𝑝 = 2

𝜔𝑐 > 𝜔180 Poles in the right half planelim
𝑡→∞

𝑦 𝑡 = ∞

wc =  0.7020

w180 =  0.5774

gm =  0.6667

gmdB = -3.5218

pm = -9.6664



MATLAB Code
clear, clc, clf

% The Process Transfer function Hp(s)

num_p=[1];

den1=[1, 0];

den2=[1, 1];

den_p = conv(den1,den2);

Hp = tf(num_p, den_p)

% The Measurement Transfer function Hm(s)

num_m=[1];

den_m=[3, 1];

Hm = tf(num_m, den_m)

% The Controller Transfer function Hr(s)

Kp = 0.35; % Stable System

%Kp = 1.32; % Marginally Stable System

%Kp = 2; % Unstable System

Hr = tf(Kp)

% The Loop Transfer function

L = series(series(Hr, Hp), Hm)

% Tracking transfer function

T=feedback(L,1);

% Sensitivity transfer function

S=1-T;

... 

...

% Bode Diagram

figure(1)

bode(L), grid on

figure(2)

margin(L), grid on

[gm, pm, w180, wc] = margin(L);

wc

w180

gm

gmdB = 20*log10(gm)

pm

% Simulating step response for control system 

(tracking transfer function)

figure(3)

step(T)

% Poles

pole(T)

figure(4)

pzmap(T)

% Bandwidth

figure(5)

bodemag(L,T,S), grid on



“Golden rules” of Stability Margins 
for a Control System

Gain Margin (GM): (Norwegian: “Forsterkningsmargin”)

Phase Margin (PM): (Norwegian: “Fasemargin”)

Theory

Reference: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.



The Bandwidth of 
the Control System 
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The Bandwidth of the Control System 

• You should plot the Loop transfer function 
𝐿(𝑠), the Tracking transfer function 𝑇(𝑠)
and the Sensitivity transfer function 𝑆(𝑠) in 
the same Bode diagram. 

• Use, e.g., the bodemag() function in 
MATLAB (only the gain diagram is of 
interest in this case, not the phase 
diagram).

• Use the values for 𝐾𝑝 and 𝑇𝑖 found in a 

previous Tasks.
• You need to find the different bandwidths 
𝝎𝒕, 𝝎𝒄, 𝝎𝒔 (see the sketch below).

𝑆

𝑇

𝐿



The Bandwidth of the Control System Theory

3 different Bandwidth definitions:

The bandwidth of a control system is the frequency which divides the frequency 
range of good tracking and poor tracking.

Good Set-point Tracking: |𝑆(𝑗𝜔)| ≪ 1, |𝑇 (𝑗𝜔)| ≈ 1, |𝐿(𝑗𝜔)| ≫ 1

Good 
Tracking

Poor 
Tracking

BW

𝑇

𝐿

𝑆



𝐾𝑝 = 0.35

𝐿

𝑇

𝑆

Good Set-point Tracking: |𝑆(𝑗𝜔)| ≪ 1, |𝑇 (𝑗𝜔)| ≈ 1, |𝐿(𝑗𝜔)| ≫ 1

𝜔𝑐 = 0.27

10.1 0.2 0.3

𝜔𝑠 = 0.092 𝜔𝑡 = 0.46

0.05





PI Controller 
Example
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PI Controller - Example
We will use the following system as an example:

𝐻𝑝 =
1

𝑠(𝑠 + 1)

𝐻𝑚 =
1

3𝑠 + 1

Controller Process

Sensors

𝑟 𝑢𝑒

− 𝑦

𝐻𝑐 =
𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠



Ziegler–Nichols Frequency Response method

https://en.wikipedia.org/wiki/Ziegler–Nichols_method

Controller 𝐾𝑝 𝑇𝑖 𝑇𝑑

P 0.5𝐾𝑐 ∞ 0

PI 0.45𝐾𝑐
𝑇𝑐
1.2

0

PID 0.6𝐾𝑐
𝑇𝑐
2

𝑇𝑐
8

Assume you use a P controller only 𝑇𝑖 = ∞,𝑇𝑑 = 0. Then you need to find for 
which 𝐾𝑝 the closed loop system is a marginally stable system (𝜔𝑐 = 𝜔180). This  𝐾𝑝
is called 𝐾𝑐 (critical gain). The  𝑇𝑐 (critical period) can be found from the damped 
oscillations of the closed loop system. Then calculate the PI(D) parameters using 
the formulas below.

𝜔𝑐 = 𝜔180

𝐾𝑐- Critical Gain

𝑇𝑐- Critical Period

Marginally stable system: 

𝑇𝑐

Theory

𝑇𝑐 =
2𝜋

𝜔180

https://en.wikipedia.org/wiki/Ziegler–Nichols_method


PI Controller using Ziegler–Nichols

𝐾𝑝 = 0.45𝐾𝑐

𝑇𝑖 =
𝑇𝑐
1.2

From previous Simulations:

𝐾𝑐 = 1.32

𝑇𝑐 =
2𝜋

𝜔180
=

2𝜋

0.58

Ziegler–Nichols (PI Controller):

This gives the following PI Parameters:

𝐾𝑝 = 0.45𝐾𝑐 = 0.45 ∙ 1.32 ≈ 0.6

𝑇𝑖 =
𝑇𝑐
1.2

=

2𝜋
0.58
1.2

≈ 9𝑠



Skogestad’s method
• The Skogestad’s method assumes you apply a step on the input (𝑢) and then 

observe the response and the output (𝑦), as shown below.

• If we have a model of the system (which we have in our case), we can use the 
following Skogestad’s formulas for finding the PI(D) parameters directly.

We set, e.g.,  𝑇𝐶 = 5 𝑠 and 𝑐 = 1.5:

𝐻𝑝 =
1

𝑠(𝑠 + 1)

Our Process:

𝐾 = 1, 𝑇 = 1, 𝜏 = 0

𝐾𝑝 =
1

𝐾(𝑇𝑐 + 𝜏)
=

1

1(10 + 0)
=
1

5
= 0.2 𝑇𝑖 = 𝑐 𝑇𝑐 + 𝜏 = 1.5 5 + 0 = 7.5𝑠

𝑇𝑐 is the time-constant of the control system which the user must specify 

Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.



MATLAB
Ziegler–Nichols and Skogestad’s Formulas:

% Ziegler-Nicols Method

Kc = 1.32; % Critical Gain

Tc = 2*pi/w180; % Tc - Critical Period

Kp = 0.45 * Kc

Ti = Tc/1.2

% Skogestad's Method

Tc = 5; % time-constant of the control system which the user must specify

c = 1.5;

% H=K*e(-Tau*s)/(T*s+1)*s

Kp = 1/K*(Tc)

Ti = c*(Tc+Tau)



pidtune() MATLAB function
clear, clc

%Define Process

num = 1;

den = [1,1,0];

Hp = tf(num,den)

% Find PI Controller

[Hpi,info] = pidtune(Hp,'PI')

%Bode Plots

figure(1)

bode(Hp)

grid on

figure(2)

bode(Hpi)

grid on

% Feedback System

T = feedback(Hpi*Hp, 1);

figure(3)

step(T)

𝐾𝑝 = 0.33

𝑇𝑖 =
1

𝐾𝑖
=

1

0.023
≈ 43.5𝑠



MATLAB PID Tuner

Define your 
Process

Define Controller Type Tuning

Add Additional 
Plots

Step Response and other 
Plots can be shown

PID Parameters



MATLAB Simulations
𝐾𝑝 = 0.33, 𝑇𝑖 = 43.5𝑠

𝐺𝑀 = 11.3𝑑𝐵, 𝑃𝑀 = 33.1°



MATLAB Simulations
clear, clc, clf

% The Process Transfer function Hp(s)

num_p=[1];

den1=[1, 0];

den2=[1, 1];

den_p = conv(den1,den2);

Hp = tf(num_p, den_p);

% The Measurement Transfer function Hm(s)

num_m=[1];

den_m=[3, 1];

Hm = tf(num_m, den_m);

% The PI Controller Transfer function Hc(s)

%Kp = 0.6; Ti = 9; % Ziegler?Nichols

%Kp = 0.2; Ti = 7.5; % Skogestad

Kp = 0.33; Ti = 43.5; % MATLAB pidtune() function

num = Kp*[Ti, 1];

den = [Ti, 0];

Hc = tf(num,den);

% The Loop Transfer function

L = series(series(Hc, Hp), Hm);

% Tracking transfer function

T=feedback(L,1);

% Sensitivity transfer function

S=1-T;

...

...

% Bode Diagram

figure(1)

bode(L), grid on

figure(2)

margin(L), grid on

[gm, pm, w180, wc] = margin(L);

wc

w180

gm

gmdB = 20*log10(gm)

pm

% Simulating step response for control system 

(tracking transfer function)

figure(3)

step(T)

% Poles

pole(T)

figure(4)

pzmap(T)

% Bandwidth

figure(5)

bodemag(L,T,S), grid on
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